
Preprint
UCRL-JCq35745

Investigation of Realistic
Performance Limits for
Tera-Scale Computations

T.A. Brunner and U.R. Hanebutte

This article was submitted to
High Performance Computing 2000
Washington, DC
April 16-20, 2000

U.S. De~artment of Energy

Lawrence
Livermore
National
Laboratory

September 9, 1999

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

INVESTIGATION OF REALISTIC PERFORMANCE
LIMITS FOR TERA-SCALE COMPUTATIONS *

Thomas A. Brunncr t and Ulf R. Hanebutte*t

t University of Michigan

1906 Colley Building

Ann Arbor, MI 48109

*l Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

Box 808, L-560

Livermore, CA 94551

Abstract

The two key factors affecting the performance of tera-
scale computations are the parallel efficiency of the
underlying algorithms, and the local performance on
a single processor. In the past, most attention was
given to parallel efficiency and parallel scalability.
This led to algorithms and techniques that provide
good scalability and parallel efficiency. However, it
was often assumed that local computations, which
require no inter-processor communications, could be
performed at a high single processor performance rate
(i.e. a high fraction of the advertised peak floating
point arithmetic performance). For today’s parallel
computers, this might not be achievable. An investi-
gation of realistic performance limits on a single pro-
cessor is the focus of this paper.

1 Introduction

Tera-scale computations can be characterized as par-
allel computing on large nmnber of processors (i.e.,
thousands of processors) with large local memory (i.e.
gigabytes of local memory on each processing node).
These computers exhibit a high aggregated theoreti-
cal peak performance, measured in Top/s (= 1012 op-

*This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.

erations per seconds). The computations themselves
contain large number of unknowns (e.g. Reference [3]
reports a calculation containing over 14 billion un-
knowns). Working with these large data sets requires
a high input/output bandwidth and substantial sec-
ondary storage space. The complexity of tera-scale
computations is high, due to the fact that coupled
physical systems (e.g. fluid dynamics combined with
chemical reactions) are being modeled. Such compu-
tations require modern algorithms which are scalable,
rapidly convergent, and often adaptive. To accommo-
date these needs, "lean" algorithms have been devel-
oped that require fewer floating-point operations per
iteration step and therefore are low in their computa-
tional intensity. The definition of computational in-
tensity and its implication in terms of performance is
discussed below. Also, the implementations of tera-
scale applications need to focus on portability and
reusability, since their lack can cause costly expendi-
tures.

Taking the above described complexity of tera-
scale computing into account, it would be over sim-
plistic to evaluate the merit of such computations ex-
clusively on its performance. Performance is com-
monly measured as the number of floating-point op-
erations per seconds. However, the floating-point per-
formance is an important lneasure and will be exam-
ined here. The performance of a parallel algorithm
is calculated by multiplying the parallel efficiency by
the number of processors and by the single proces-

for(i=O; i<n; i++)
x[i] = x[i] + c*y[i];

}
// 2 Ld, 2 Fop, I St

Figure 1: Code fragment: Triad operation with vectors of length n, where Fop is floating-point
operation, Ld is load, and St is store

sor floating-point rate. While the parallel efficiency
is the subject of many papers, we focus on the in-
vestigation of realistic performance limits on a single
processor. Single processor code optimization is not a
new discipline and computer vendors provide guides
such as [1] to help application developers. Due to re-
cent developments in computer hardware design sin-
gle processor optimization gained significance in par-
allel algorithm development. For example, Gropp et
al. report in [5] their research on implicit CFD codes,
and Toledo [10] studied sparse-matrix vector multi-
plication. In the following sections we 1) present the
ASCI Blue-Pacific SST system, 2) discuss the general
concept of computational intensity and the memory
bottleneck, 3) introduce two kernel routines which are
associated with a projection method, and 4) give per-
formance results for various implementations of these
kernels.

2 The ASCI Blue-Pacific SST
System

The ASCI Blue-Pacific SST system at LLNL [13] is
a three-sector machine with each sector housing 432
four-was, SMP compute nodes for a total of 1,296
compute nodes. Each processor is a 332 MHz Pow-
erPC 604e capable of two operations per clock cycle,
i.e. 664 Mop/s. The system peak performance, tak-
ing compute and support nodes into account, is 3.9
Top/s. The compute nodes are outfitted with either
1.5 or 2.5 gigabytes of memory resulting in a total of
2.6 Tbytes for the entire system.

A mixed computing model which combines a dis-
tributed and a shared memory computing model is
required. In general, the message passing interface
MPI [4] is used to distribute, execute and control the
parallel computation among processing nodes. For
the second level of parallelism, which exploits the four
processors on a node, a number of options are pro-
vided to the application developer. One can resort

to parallelized mathematics and engineering libraries,
write explicit parallel shared memory programs by
utilizing the Pthread library [9], as well as introduce
this second level of parallelism implicitly through the
use of OpenMP [12] pragmas. In the case of OpenMP,
the compiler will augment the program automatically.
OpenMP is supported on the ASCI Blue-Pacific sys-
tem through the KAP/PRO toolset [11].

3 Computational intensity and
the memory access bottle-
neck

The peak performance of a single processor of the
IBM ASCI Blue-Pacific is 664 Mop/s; however, in or-
der to achieve peak performance data has to be in
the registers. If only a few operations per data item
are performed, such as it is the case for many scien-
tific computations, memory bandwidth between main
memory and the processing units becomes the lim-
iting performance factor. Quoting Roger W. Hock-
ney [6] "If there is a memory access bottleneck, then
the key program variable to consider is the compu-
tational intensity, f, which is defined as the num-
ber of arithmetic operations performed per memory
transfer. Put another way, it is how intensely one
computes with data once it has been received in the
registers (or cache) within the arithmetic unit. If the
computational intensity is high, ... the memory bot-
tleneck is not seen. On the other hand, if the compu-
tational intensity is low then the time spent on data
transfer dominates the calculation, and the perfor-
mance of the computer is much less than that adver-
tised on the basis of the m’ithmetic rate." Hockney
classifies problems according to their computational
intensity as belonging to the class of order O(1),
O(log n) or O(n) problems. For example, the compu-
tational intensity of the triad operation (Fig. 1), i.e.
daxpy or saxpy is f = 2/3, while a matrix multiply
of 2 n x n matrices has f = 2/3n.

In order to study the memory bandwidth bound for
the four-way SMP node we extended the STREAM
benchmark [8]. STREAM is a simple synthetic
benchmm’k program that measures sustainable mem-
ory bandwidth (in MB/s) and the corresponding com-
putation rate for simple vector kernels which have a
computational intensity of order O(1). It is specif-
ically designed to work with data sets much larger
than the available cache on any given system, so that
the results are (presumably) more indicative of the
performance of very large vector style applications.
The benchmark is comprised of a set of operations.
Included in this suite is the triad operation(Fig. 1),
which is a very common operation in scientific com-
puting. Therefore, the triad operation is studied here.

A shared memory parallel implementation utilizing
the Pthread library [9] as well as an OpenMP [12] im-
plementation (utilizing the KAP/PRO toolset [ll])of
tile triad operation are compared to the single pro-
cessor version of the triad algorithm. For the triad
operation, which requires 2 load, 2 floating point and
1 store operations, a surprisingly low number of 17.5
MFlop/s were measured when utilizing only one of
the four processors on a SP node. An aggregated
performance of 49.6 MFlop/s was obtained for the 4-
way SMP oil blocked data, while memory contention
reduces the performance below tile single processor
limit if data is non-blocked. The results given in Ta-
ble 1 show that for blocked data the OpenMP im-
plementation provides the same performance as the
Pthread implementation, while for the non-blocked
case the Pthread version outperforms the OpenMP
code.

Work assignment Pthreads OpenMP
Blocked 49.6 49.6

Stride of 4 12.6 9.2

Table 1: Performance numbers (given in
MFlop/s) of the Triad kernel for a vector length

of 40,000,000. Pthread and OpenMP code
take advantage of all four processors of a SMP

node. Utilizing only one processor results in 17.5

MFlop/s.

4 The P and Pplus Kernels

In this section we introduce two kernel routines
which are derived from an actual tern-scale applica-
tion. These kernels are associated with a projection
method [2](hence the names P and Pplus) that is uti-
lized in a neutral particle transport solver [3]. To fa-
cilitate the study, both kernels were extracted from
the actual code and were integrated into a separate
test framework. To verify accurate kernel behavior in
the test framework, execution times were compared
between the actual code and the kernel code, as given
in Table 2. While the actual code contains two dif-
ferent versions of each routine, denoted by P1, P2,
Pl_plus and P2_plus, only one is discussed here. The
original implementation of the two kernels are given
in Fig. 2 and Fig. 3.

P1 P2 P 1_plus P2_plus

Actual code 3.210 5.180 3.070 4.940
Kernel 3.086 4.991 3.085 5.025

Table 2: Comparison between kernel and actual

code performance (wall clock in seconds). IBM
Xprofiler tool is used to determine actual code
performance.

The two variables, number of elements and number
of segments, are problem dependent. While number
of elements can vary in a wide range, number of seg-
ments can only be one of few discrete values. The first
modification to the original routines utilizes the IBM
ESSL library [7]. The loops including the triad oper-
ations are replaced by calls to the optimized library
routines daxpy and dyax. The third implementation
of the kernels is a hand tuned version given in Fig. 6
and Fig. 7. In the tuned routines, loops are unrolled,
data reuse if optimized and load/store operations are
explicitly coded. For brevity, only one case, where
the number" of segments is equal to 4 is shown here.
All kernels were compiled with the IBM C-compiler
xlc. The compile options were the following: -03
-qarch=ppc -qtune=604 -qunroll=4.

5 Kernel Performance

Tile three implementations of the P routine are con>
pared for varying vector lengths (size 1 to 503

for(n=O; n<num_segments; n++)
y_seg = y + n*num_elements;
a = A[n] ;
for(i=O; i<num_elements; i++

y_seg[i] += a * x[i];
}

Figure 2: Code fragment of the original P routine

for(n=O; n<num_segments; n++)
y_seg = y + n*num_elements;
a = A[n];
daxpy(num_elements, a, x, I, y_seg, I);

}

Figure 4: Code fragment of the P routine utiliz-

ing the IBM ESSL library

for(i=O; i<num_elements; i++) x[i] = 0.;

for(n=O; n<num_segments; n++)
y_seg = y + n*num_elements;

b = B[n];

for(i=O; i<num_elements; i++
x[i] += b * y_seg[i];

b = B[O] ;
y_seg = y;
dyax(hum_elements, b, y_seg, i, x, I);

for(n=l; n<num_segments; n++)
y_seg = y + n*num_elements;
b = B[n];
daxpy(num_elements, b, y_seg, I, x, I);

}

Figure 3: Code fragment of the original Pplus
routine

125,000). The number of segments is set to 4. The
performance is given in terms of Mop/s (i.e. 106 op-
erations per second) in Fig. 8. Along the kernel re-
sults, the STREAM benchmark result for the triad
operation is given by a dotted line. The original ver-
sion of the P routine approaches the memory band-
width limit provided by the STREAM benchmark
when the vector size is large. Utilizing the ESSL li-
brary provides better performance for a vector length
larger then 100, while the best overall performance is
achieved by the hand tuned kernel. For large vectors,
a factor of two performance gain can be seen for the
hand tuned version compared to the original kernel.
To obtain results free of cache effects the test frame-
work flushed the cache prior to each kernel execution,
thereby ensuring that the kernels accessed data from
main memory rather" than cache.

Performance numbers for the Pplus routine are
given in Fig. 9. The three implementations of the
Pplus routine are compared for varying vector lengths
(size 1 to 503 = 125,000). The number of segments
set to 4. Tile performance is given in terms of Mop/s
(i.e. 106 operations per second) in Fig. 9. Along the
kernel results, the STREAM benchmark result for the
triad operation is given by a dotted line. As before,

Figure 5: Code fragment of the Pplus routine
utilizing the IBM ESSL library

the results are fl’ee of cache effects. Tile asymptotic
limit of original version of the Pplns routine is slightly
above the memory bandwidth. Similar to the P ker-
nel, utilizing the ESSL library provides better per-
formance for a vector length larger then 100, while
the best overall performance is achieved by the hand
tuned kernel. For large vectors, data rense in the
hand tuned kernel clearly contributes to the three
fold performance increase compared to the original
code.

6 Conclusion

We have shown that, in order to derive realistic per-
formance limits for tera-scale computations one needs
to identify the computational coinplexity of critical
code components. If the computational complexity
is low, i.e. the number of floating-point operations
per data item is low, than the performance of the
computation is limited by the memory access band-
width and not by the peak performance of the pro-
cessing units. Current hardware trends indicate an
ever widening gap between CPU and memory per-
formance. Thus, algorithms with low computational

7O

6O

50

40
CL
0

3O

2O

10

10o

--~- Original
¯ ~. ESSL
--x-- Hand Tuned
.... Stream Benchmark

~.:J’~ ~ ~ ""...-- ¯ .. ".

. i *
/-

101 102 103 104 105
Vector size

Figure 8: Performance numbers for the P routine

complexity achieve an ever declining fraction of peak.
Two representative kernels, derived from an actual

tera-scale simulation were studied. These kernels rep-
resent algorithms with a low order of computational
complexity. The original code and two alternative
implementations are discussed and compared. Tak-
ing the memory bandwidth bound into consideration
and aggressively restructuring to take advantage of
data reuse and loop unrolling, a speedup of 2 to 3
times compared to the original implementation could
be achieved.

References

[1] Andersson, S., et al. RS/6000 Scientific and
Technical Computing: Power3 Introduction
and Tuning Guide. SG24-5155-00,
http://www.redbooks.ibm.com

[2] Brown, P.N. A linear algebraic development of
diffusion synthetic acceleration for 3-d transport
equations. SIAM J. Numer. Anal., 32 (1995), pp.
179-214.

[3] Brown, P.N., Chang, B., Dorr, M.R., Haneb-
utte, U.R and Woodward C.S Performing Three-
Dimensional Neutral Particle Transport Calcu-
lations on Tera Scale Computers. High Per-
formance Computing ’99 (part of the 1999
Advanced Simulation Technologies Conference),
ISBN: 1-56555-166-4, page 76-81, April 11 - 15,
1999, San Diego, CA. also: UCRL-JC-132006

[4] Gropp, W.D., Lusk, E., Skjellmn, A. (1994). Us-
ing MPI. MIT Press, Cainbridge, MA, 1994.

[5] Gropp, W.D., Kaushik, D.K., Keyes, D.E. and
Smith, B.F. Towards Realistic Performance
Bounds for Implicit CFD Codes. Parallel CFD

7O

60

5O

40c~
0

3O

20

10

0°

........ I I
--h- Original
.-~- ESSL
--x-- Hand Tuned
.... Stream Benchmark

........ I I I

-,~6...
,

’-..~,
,." ".

// ." \

/ /" ...-
.."

r , , , , ,,, i i i i i1,,I , , , i i illl i i , , , ,,,I , , , i

101 102 103 104 105
Vector size

Figure 9: Performance numbers for the Pplus routine

[6]

[7]

IS]

[9]

’99, May 23 - 26, 1999, Wiliamsburg, VA, pro-
cessings to be published by North Holland

Hockney, R.W. The Science of Computer Bench-
’marking. SIAM, Philadelphia, PA, 1996.

IBM Engineering and Scientific Subroutine Li-
brary for AIX. Guide and Reference SA22-
7272-01, http://www.rs6000.ibm.com/resource/

aixJ’esource/sp_books/essl/

McCalpin, J.D. STREAM: Sustainable mem-
ory bandwidth in high performance computers.
Technical report, University of Virginia, 1995.

http://www.cs.virginia.edu/stream

Nichols, B., Buttlar, D. and Proulx Farrell, J.
Pthreads Programming. O’Reilly, 1996.

[10] Toledo, S. Improving the memory-system per-
formance of sparse-matrix vector multiplication.
IBM J.Res. and Dev., 41: 711-725, 1997

[11] www document The KAP/Pro toolset for
OpenMP. http://www.kai.com/parallel/kappro

[12] www document Home page of the OpenMP
Architecture Review Board.
http://www.openmp.org

[13] www document System Attributes for the ASCI
Blue-Pacific Systems. UCRL-MI-128208

ht tp: / /www.lhfl.gov / asci / platforms /bluepac /
blue.table.html, January, 1, 1999.

swit ch (num_segment s) {
case 4 :

pO=y ;
pi = y + num_elements;
p2 = y + 2,num_elements;

p3 = y + 3,num_elements;

aO = A[O] ;
al = A[I] ;

a2 = A[2] ;

a3 = A[3] ;
for(i=O; i<num_elements; i++){

aux = x[i] ;
tO = pO [i] ;
tl = pl[i] ;
t2 = p2 [i] ;
t3 = p3[i] ;

tO = tO + aO * aux;

tl = tl + al * aux;

t2 = t2 + a2 * aux;

t3 = t3 + a3 * aux;
pO[i] = tO;

pl[i] = tl;

p2 [i] = t2 ;
p3 [i] = t3 ;

}
break ;

default :
/. original code */

}

swit ch(num_segment s)

case 4 :
p0=y;
pl = y + num elements;

p2 = y + 2,num_elements;
p3 = y + 3,hum elements;

bO = B[O] ;
bl = B[I] ;

b2 = B[2] ;
b3 = B[3] ;

for(i=O; i<num_elements; i++){
x[i] = bO * pO[i] + bl * pl[i]

+ b2 * p2[i] + b3 * p3[i];

}
break ;

default :
/, original code */

}

Figure 7: Code fragment of the hand optimized

Pplus routine

Figure 6: Code fragment of the hand optimized
p routine

